Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Perubahan tertunda ditampilkan di halaman iniBelum Diperiksa
Langsung ke: navigasi, cari
Broom icon.svg
Artikel ini perlu dirapikan agar memenuhi standar Wikipedia
Merapikan artikel bisa berupa membagi artikel ke dalam paragraf atau wikifikasi artikel. Setelah dirapikan, tolong hapus pesan ini.
Barometer air raksa sebagai pengukur tekanan udara dalam satuan milibar
Tekanan (p) adalah satuan fisika untuk menyatakan gaya (F) per satuan luas (A).
p = \frac{F}{A}
Satuan tekanan sering digunakan untuk mengukur kekuatan dari suatu cairan atau gas.
Satuan tekanan dapat dihubungkan dengan satuan volume (isi) dan suhu. Semakin tinggi tekanan di dalam suatu tempat dengan isi yang sama, maka suhu akan semakin tinggi. Hal ini dapat digunakan untuk menjelaskan mengapa suhu di pegunungan lebih rendah dari pada di dataran rendah, karena di dataran rendah tekanan lebih tinggi.
Akan tetapi pernyataan ini tidak selamanya benar atau terkecuali untuk uap air, uap air jika tekanan ditingkatkan maka akan terjadi perubahan dari gas kembali menjadi cair. (dikutip dari wikipedia : kondensasi). Rumus dari tekanan dapat juga digunakan untuk menerangkan mengapa pisau yang diasah dan permukaannya menipis menjadi tajam. Semakin kecil luas permukaan, dengan gaya yang sama akan dapatkan tekanan yang lebih tinggi.
Tekanan udara dapat diukur dengan menggunakan barometer.
[sunting] Tekanan Hidrostatis
Tekanan Hidrostatis adalah tekanan yang terjadi di bawah air. Tekanan ini terjadi karena adanya berat air yang membuat cairan tersebut mengeluarkan tekanan. Tekanan sebuah cairan bergantung pada kedalaman cairan di dalam sebuah ruang dan gravitasi juga menentukan tekanan air tersebut.
Hubungan ini dirumuskan sebagai berikut: "P = ρgh" dimana ρ adalah masa jenis cairan, g (10 m/s2) adalah gravitasi, dan h adalah kedalaman cairan.
[sunting] Tekanan Udara
Atmosfer adalah lapisan yang melindungi bumi. Lapisan ini meluas hingga 1000 km ke atas bumi dan memiliki massa 4.5 x 1018 kg. Massa atmosfir yang menekan permukaan inilah yang disebut dengan tekanan atmosferik. Tekanan atmosferik di permukaan laut adalah 76 cmHg.
[sunting] Aplikasi Tekanan
Tekanan diaplikasikan dalam beberapa hal dalam kehidupan, diantaranya:
* Pengukuran tekanan darah
* Pompa Hidrolik yang biasanya dipakai di bengkel-bengkel
Diposkan oleh hasnita_clifer_antika di 02:06 0 komentar
Kirimkan Ini lewat Email BlogThis! Berbagi ke Twitter Berbagi ke Facebook Berbagi ke Google Buzz
Label: Fisika
Reaksi:lucu
Momentum
Momentum
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Perubahan tertunda ditampilkan di halaman iniBelum Diperiksa
Langsung ke: navigasi, cari
Ayunan Newton membuktikan adanya konservasi momentum
Dalam fisika, momentum adalah besaran yang berhubungan dengan kecepatan dan massa suatu benda.
[sunting] Momentum dalam mekanika klasik
Dalam mekanika klasik, momentum (dilambangkan dengan P) didefinisikan sebagai hasil perkalian dari massa dan kecepatan, sehingga menghasilkan vektor.
Momentum suatu benda (P) yang bermassa m dan bergerak dengan kecepatan v didefinisikan sebagai ::
\mathbf{P}= m \mathbf{v}\,\!
Massa merupakan besaran skalar, sedangkan kecepatan merupakan besaran vektor. Perkalian antara besaran skalar dengan besaran vektor akan menghasilkan besaran vektor. Jadi, momentum merupakan besaran vektor. Momentum sebuah partikel dapat dipandang sebagai ukuran kesulitan untuk mendiamkan benda. Sebagai contoh, sebuah truk berat mempunyai momentum yang lebih besar dibandingkan mobil yang ringan yang bergerak dengan kelajuan yang sama. Gaya yang lebih besar dibutuhkan untuk menghentikan truk tersebut dibandingkan dengan mobil yang ringan dalam waktu tertentu. (Besaran mv kadang-kadang dinyatakan sebagai momentum linier partikel untuk membedakannya dari momentum angular).
[sunting] Hukum Kekekalan Momentum
Sama seperti energi, dalam kondisi tertentu, momentum suatu sistem akan kekal atau tidak berubah. Untuk memberikan pemahaman mengenai hal tersebut, maka akan digunakan konsep Pusat Massa. Misal jika ada sebuah sistem yang terdiri dari beberapa benda dengan massa \mathbf{m_1}, \mathbf{m_2}, \mathbf{.....}. bergerak dengan kecepatan masing-masing adalah \mathbf{v_1}, \mathbf{v_2}, \mathbf{.....}., maka kecepatan pusat massa sistem tersebut adalah :
\mathbf{v_{cm}} = { \displaystyle\sum m_i \mathbf{v}_i \over \displaystyle\sum m_i }.
Dan jika sistem tersebut bergerak dengan dipercepat dengan percepatan masing-masing adalah \mathbf{a_1}, \mathbf{a_2}, \mathbf{.....}., maka percepatan pusat massa sistem tersebut adalah :
\mathbf{a_{cm}} = { \displaystyle\sum m_i \mathbf{a}_i \over \displaystyle\sum m_i }.
Sekarang jika benda-benda tersebut masing-masing diberi gaya \mathbf{F_1}, \mathbf{F_2}, \mathbf{.....}., maka benda-benda tersebut masing-masing memiliki percepatan :
\mathbf{a_{i}} = { \mathbf{F_i} \over m_i }.
Sehingga percepatan pusat massa sistem dapat dinyatakan sebagai :
\mathbf{a_{cm}} = { \displaystyle\sum \mathbf{F}_i \over \displaystyle\sum m_i }.
Notasi \displaystyle\sum \mathbf{F}_i. merupakan notasi yang menyatakan resultan gaya yang bekerja pada sistem tersebut. Jika resultan gaya yang bekerja pada sistem bernilai nol (\displaystyle\sum \mathbf{F}_i = 0), maka sistem tersebut tidak dipercepat (\displaystyle\sum \mathbf{a}_i = 0). Jika sistem tidak dipercepat, artinya sistem tersebut kecepatan pusat massa sistem tersebut konstan (\mathbf{v_{cm}} = constant). Jadi dapat disimpulkan bahwa :
\displaystyle\sum m_i \mathbf{v}_i = constant.
Notasi di atas merupakan notasi dari hukum kekekalan momentum. Jadi total momentum suatu sistem akan selalu kekal hanya jika resultan gaya yang bekerja pada sistem tersebut bernilai nol.
[sunting] Pranala luar
* (id) Impuls dan momentum
Science.jpg Artikel bertopik fisika ini adalah sebuah rintisan. Anda dapat membantu Wikipedia dengan mengembangkannya.
Perubahan tertunda ditampilkan di halaman iniBelum Diperiksa
Langsung ke: navigasi, cari
Broom icon.svg
Artikel ini perlu dirapikan agar memenuhi standar Wikipedia
Merapikan artikel bisa berupa membagi artikel ke dalam paragraf atau wikifikasi artikel. Setelah dirapikan, tolong hapus pesan ini.
Barometer air raksa sebagai pengukur tekanan udara dalam satuan milibar
Tekanan (p) adalah satuan fisika untuk menyatakan gaya (F) per satuan luas (A).
p = \frac{F}{A}
Satuan tekanan sering digunakan untuk mengukur kekuatan dari suatu cairan atau gas.
Satuan tekanan dapat dihubungkan dengan satuan volume (isi) dan suhu. Semakin tinggi tekanan di dalam suatu tempat dengan isi yang sama, maka suhu akan semakin tinggi. Hal ini dapat digunakan untuk menjelaskan mengapa suhu di pegunungan lebih rendah dari pada di dataran rendah, karena di dataran rendah tekanan lebih tinggi.
Akan tetapi pernyataan ini tidak selamanya benar atau terkecuali untuk uap air, uap air jika tekanan ditingkatkan maka akan terjadi perubahan dari gas kembali menjadi cair. (dikutip dari wikipedia : kondensasi). Rumus dari tekanan dapat juga digunakan untuk menerangkan mengapa pisau yang diasah dan permukaannya menipis menjadi tajam. Semakin kecil luas permukaan, dengan gaya yang sama akan dapatkan tekanan yang lebih tinggi.
Tekanan udara dapat diukur dengan menggunakan barometer.
[sunting] Tekanan Hidrostatis
Tekanan Hidrostatis adalah tekanan yang terjadi di bawah air. Tekanan ini terjadi karena adanya berat air yang membuat cairan tersebut mengeluarkan tekanan. Tekanan sebuah cairan bergantung pada kedalaman cairan di dalam sebuah ruang dan gravitasi juga menentukan tekanan air tersebut.
Hubungan ini dirumuskan sebagai berikut: "P = ρgh" dimana ρ adalah masa jenis cairan, g (10 m/s2) adalah gravitasi, dan h adalah kedalaman cairan.
[sunting] Tekanan Udara
Atmosfer adalah lapisan yang melindungi bumi. Lapisan ini meluas hingga 1000 km ke atas bumi dan memiliki massa 4.5 x 1018 kg. Massa atmosfir yang menekan permukaan inilah yang disebut dengan tekanan atmosferik. Tekanan atmosferik di permukaan laut adalah 76 cmHg.
[sunting] Aplikasi Tekanan
Tekanan diaplikasikan dalam beberapa hal dalam kehidupan, diantaranya:
* Pengukuran tekanan darah
* Pompa Hidrolik yang biasanya dipakai di bengkel-bengkel
Diposkan oleh hasnita_clifer_antika di 02:06 0 komentar
Kirimkan Ini lewat Email BlogThis! Berbagi ke Twitter Berbagi ke Facebook Berbagi ke Google Buzz
Label: Fisika
Reaksi:lucu
Momentum
Momentum
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Perubahan tertunda ditampilkan di halaman iniBelum Diperiksa
Langsung ke: navigasi, cari
Ayunan Newton membuktikan adanya konservasi momentum
Dalam fisika, momentum adalah besaran yang berhubungan dengan kecepatan dan massa suatu benda.
[sunting] Momentum dalam mekanika klasik
Dalam mekanika klasik, momentum (dilambangkan dengan P) didefinisikan sebagai hasil perkalian dari massa dan kecepatan, sehingga menghasilkan vektor.
Momentum suatu benda (P) yang bermassa m dan bergerak dengan kecepatan v didefinisikan sebagai ::
\mathbf{P}= m \mathbf{v}\,\!
Massa merupakan besaran skalar, sedangkan kecepatan merupakan besaran vektor. Perkalian antara besaran skalar dengan besaran vektor akan menghasilkan besaran vektor. Jadi, momentum merupakan besaran vektor. Momentum sebuah partikel dapat dipandang sebagai ukuran kesulitan untuk mendiamkan benda. Sebagai contoh, sebuah truk berat mempunyai momentum yang lebih besar dibandingkan mobil yang ringan yang bergerak dengan kelajuan yang sama. Gaya yang lebih besar dibutuhkan untuk menghentikan truk tersebut dibandingkan dengan mobil yang ringan dalam waktu tertentu. (Besaran mv kadang-kadang dinyatakan sebagai momentum linier partikel untuk membedakannya dari momentum angular).
[sunting] Hukum Kekekalan Momentum
Sama seperti energi, dalam kondisi tertentu, momentum suatu sistem akan kekal atau tidak berubah. Untuk memberikan pemahaman mengenai hal tersebut, maka akan digunakan konsep Pusat Massa. Misal jika ada sebuah sistem yang terdiri dari beberapa benda dengan massa \mathbf{m_1}, \mathbf{m_2}, \mathbf{.....}. bergerak dengan kecepatan masing-masing adalah \mathbf{v_1}, \mathbf{v_2}, \mathbf{.....}., maka kecepatan pusat massa sistem tersebut adalah :
\mathbf{v_{cm}} = { \displaystyle\sum m_i \mathbf{v}_i \over \displaystyle\sum m_i }.
Dan jika sistem tersebut bergerak dengan dipercepat dengan percepatan masing-masing adalah \mathbf{a_1}, \mathbf{a_2}, \mathbf{.....}., maka percepatan pusat massa sistem tersebut adalah :
\mathbf{a_{cm}} = { \displaystyle\sum m_i \mathbf{a}_i \over \displaystyle\sum m_i }.
Sekarang jika benda-benda tersebut masing-masing diberi gaya \mathbf{F_1}, \mathbf{F_2}, \mathbf{.....}., maka benda-benda tersebut masing-masing memiliki percepatan :
\mathbf{a_{i}} = { \mathbf{F_i} \over m_i }.
Sehingga percepatan pusat massa sistem dapat dinyatakan sebagai :
\mathbf{a_{cm}} = { \displaystyle\sum \mathbf{F}_i \over \displaystyle\sum m_i }.
Notasi \displaystyle\sum \mathbf{F}_i. merupakan notasi yang menyatakan resultan gaya yang bekerja pada sistem tersebut. Jika resultan gaya yang bekerja pada sistem bernilai nol (\displaystyle\sum \mathbf{F}_i = 0), maka sistem tersebut tidak dipercepat (\displaystyle\sum \mathbf{a}_i = 0). Jika sistem tidak dipercepat, artinya sistem tersebut kecepatan pusat massa sistem tersebut konstan (\mathbf{v_{cm}} = constant). Jadi dapat disimpulkan bahwa :
\displaystyle\sum m_i \mathbf{v}_i = constant.
Notasi di atas merupakan notasi dari hukum kekekalan momentum. Jadi total momentum suatu sistem akan selalu kekal hanya jika resultan gaya yang bekerja pada sistem tersebut bernilai nol.
[sunting] Pranala luar
* (id) Impuls dan momentum
Science.jpg Artikel bertopik fisika ini adalah sebuah rintisan. Anda dapat membantu Wikipedia dengan mengembangkannya.
Diposting oleh
my blog
Label:
FISIKA
0 komentar:
Posting Komentar